\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải phương trình vô tỉ:
a) \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
c) \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
d) \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
e) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
g) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Tính gtbt: \(P=\frac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\) với \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
giải các phương trình sau ( mình đang cần gấp cảm ơn )
1) x+\(\sqrt{4-x^2}\)= 2+2x.\(\sqrt{4-x^2}\)
2) \(\sqrt{2x^2+11x+19}\)+\(\sqrt{2x^2+5x+1}\)=3.( x+1)
3) \(\sqrt{4x^2+5x+1}\)- 2\(\sqrt{x^2-x+1}\)=9x-3
4) \(\sqrt{2x^2+7x+10}\)+\(\sqrt{2x^2+x+4}\)= 3( x+1)
5) 2x2+5x-1=7.\(\sqrt{x^3-1}\)
6) 2x2+4 = 3\(\sqrt{x^3+1}\)
7) 10\(\sqrt{x^3+1}\)= 3x2+6
giải các phương trình sau
1) x+\(\sqrt{4-x^2}\)=2+2x\(\sqrt{4-x^2}\)
2) \(\sqrt{2x^2+11x+19}\)+\(\sqrt{2x^2+5x+1}\)=3.( x+1)
3) \(\sqrt{2x^2+7x+10}\)+\(\sqrt{2x^2+x+4}\)= 3.(x+1)
4) \(\sqrt{4x^2+5x+1}\)- 2\(\sqrt{x^2-x-1}\)= 9x-3
5) 2x2+4=3.\(\sqrt{x^3+1}\)
6) 2x2+5x-1=7\(\sqrt{x^3-1}\)
(Gấp xin hãy giải hộ vs ạ chiều e học rùi . E xin cảm ơn) GIẢI PHƯƠNG TRÌNH SAU
1)\(\frac{3}{\sqrt{x-2}+3}\)-\(\frac{1}{\sqrt{x+6}+3}\)=2
2)\(\sqrt{x^2+2x}\)+\(\sqrt{2x-1}\)=\(\sqrt{3x^2+4x+1}\)
4) ( 3x+1).\(\sqrt{2x^2-1}\)=5x2+\(\frac{3x}{2}\)
5) x2+7x=(2x+1).\(\sqrt{x^2+x+6}\)
6) \(\sqrt{5x^2+6x+5}\). (5x2+6x++6)=4x. (16x2+1)
Giải phương trình : \(7x^2\)-5x+6=(11x-1)\(\sqrt{x^2 + 3}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)