Chỉ mình chỗ khoanh tròn màu đỏ:
+ Tại sao ra 2 trường hợp 0<x<1 ; x>1
+ \(\dfrac{1}{\sqrt{x}-1}\le-1\) ( làm sao ra được như này)
+ \(\sqrt{x}-1>0\) có phải từ x>1 rồi lấy căn 2 vế rồi chuyển vế đúng không
+ Và tại sao gọi là hàm số và tại sao lại không tìm được GTLN
+ Còn GTNN thì sẽ như thế nào
Các bạn chỉ mình cái chiix mà m^2+V^2 = V^2+m^2 là bình phương cả hai vế lên ạ. Hay là thế nào mà ra tất cả đều mũ 2 ạ
Các bạn chỉ mình cái chiix mà m^2+V^2 = V^2+m^2 là bình phương cả hai vế lên ạ. Hay là thế nào mà ra tất cả đều mũ 2 ạ
Mọi người chỉ mình ạ!
Bài 1: giải phương trình
\(\sqrt{5x^2}=2x-1\)
* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé
* Với nhưng dạng thế nào thì có thể bình phương ạ!
Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn.
* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao
Bài 3:
Ví dụ: \(x^2\ge2x\) .
* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ!
Giups mình đầy đủ chỗ (*) nhá!
cho phương trình \(x^2+2\left(m-1\right)x+2m-5=0\) (1) (x là ẩn số)
a,cmr phương trình (1) luuôn có 2 nghiệm phân biệt với mọi m
b,tìm tất cả các giá trị của m sao cho \(x_1\le0< x_2\)
giải giúp với ạ
. Cho phương trình: x 2 + 5x − 7 = 0 có hai nghiệm x1, x2 . Không giải phương trình, hãy tính: M = x 2 1 + x 2 2 − 2x1x2.
Các bạn chỉ mình !
Bài này là bài Có biểu thức
và đây là phần c ) Tìm x để \(P< -\dfrac{1}{2}\), mình giải ra rồi P = \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\). Mình nghĩ ra mấy cách như thế này nhưng không biết nó cứ như nào ấy
Cách 1 : Chuyển vế \(-\dfrac{1}{2}\) sang thì sẽ ra \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) , giải ra cũng ra kết quả là x<9
* Nhưng cho mình hỏi về cách này : Mình nghĩ là \(-\dfrac{3}{\sqrt{x}+3}\) đang nhỏ hơn \(-\dfrac{1}{2}\left(-0,5\right)\) , nó đang nhỏ hơn -0,5 mà nếu chuyển vế sang thì \(-\dfrac{3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\) ( mình nghĩ nếu nhỏ hơn 0 thì không thể nhỏ hơn -0,5 được ) , nhưng tại sao nó vẫn ra kết quả vậy ạ . Giair thích cho mình chỗ mà mình đang bị nhầm lẫn và sửa giúp mình nhá !
Cách 2 : Vẫn đê nguyên như cũ \(-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{2}\) ( vì \(\sqrt{x}+3>0\) , 2>0 ) nên là mình nhân chéo . Mình lấy 1 công thức tổng quát : \(-\dfrac{a}{b}< -\dfrac{c}{d}\)
* Nếu mà mình nhân theo kiểu \(-a.d< -c.b\) và 1 kiểu khác \(b.\left(-c\right)< \left(-a\right).d\) hai kiểu này nó lại khác nhau mà làm theo kiểu thứ nhất thì nó lại đúng vẫn ra x<9 . Các bạn cũng chỉ mình chỗ sai nhé ạ và giúp mình sửa ạ
Chị , chị giúp em với ạ ! Akai Haruma
Các bạn ơi Ví dụ căn (16x) =căn (81) . Khi mà làm mất căn đi theo ý hiểu của mình là bình phương hai vế lên để mất căn ( vì hai vế bằng nhau rồi và cùng bình phương lên thì nó cũng vẫn bằng nhau ) . Mình có đúng không ạ. Nếu mà sai thì các bạn chỉ ra lỗi sai giúp mình và giải thích rõ hộ giúp mình ạ
Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.
Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:
BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).
BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).
Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải khác nhau. Nhưng trước đó trong phần bài tập ví dụ, sách có đưa ra một số bài toán khác cùng dạng và có hướng dẫn giải chi tiết theo phương pháp tách ra thành tổng các bình phương để đánh giá nên em nghĩ 2 bài này cũng có thể làm theo cách này.
(Cụ thể em xin lấy ví dụ sau:
BTVD: Cho các số thực m, n, p thoả mãn:
\(2m^2+2n^2+4p^2+3mn+mp+2np=\dfrac{3}{2}\)
Tìm GTNN và GTLN của \(B=m+n+p\)
HDG: Giả thiết \(\Rightarrow4m^2+4n^2+8p^2+6mn+2mp+4np=3\)
\(\Leftrightarrow3\left(m+n+p\right)^2+\left(m-2p\right)^2+\left(n-p\right)^2=3\)
\(\Rightarrow\left(m+n+p\right)^2\le1\Rightarrow-1\le m+n+p\le1\))
Em thấy cách giải nhìn rất đơn giản nhưng thực sự để nghĩ ra cách nhân, cách tách là điều không dễ. Em không biết để làm dạng này là phải đoán, phải thử cách tách hay có mẹo nào để biết tách không ạ, để nếu như đi thi gặp dạng này có thể làm nhanh. Mong mọi người có thể giúp em.