Đặt \(A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2024}}\)
=>\(2A=2+1+\frac12+\cdots+\frac{1}{2^{2023}}\)
=>\(2A-A=2+1+\frac12+\cdots+\frac{1}{2^{2023}}-1-\frac12-\frac{1}{2^2}-\cdots-\frac{1}{2^{2024}}\)
=>\(A=2-\frac{1}{2^{2024}}\)
\(\left(x+\frac12\right)^{2024}=2-\left(1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2024}}\right)\)
=>\(\left(x+\frac12\right)^{2024}=2-\left(2-\frac{1}{2^{2024}}\right)=\frac{1}{2^{2024}}=\left(\frac12\right)^{2024}\)
=>\(\left[\begin{array}{l}x+\frac12=\frac12\\ x+\frac12=-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac12-\frac12=0\\ x=-\frac12-\frac12=-\frac22=-1\end{array}\right.\)