\(\left|x-\dfrac{1}{5}\right|-x=\dfrac{1}{3}\)
\(\Rightarrow\left|x-\dfrac{1}{5}\right|=x+\dfrac{1}{3}\)
\(\Rightarrow x-\dfrac{1}{5}=x+\dfrac{1}{3}\) hoặc \(\Rightarrow x-\dfrac{1}{5}=-x-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{5}=\dfrac{1}{3}\) (loại) hoặc \(2x=-\dfrac{2}{15}\Rightarrow x=-\dfrac{1}{15}\)
+) Xét \(x\ge\dfrac{1}{5}\) ta có:
\(x-\dfrac{1}{5}-x=\dfrac{1}{3}\Rightarrow\dfrac{-1}{5}=\dfrac{1}{3}\) ( vô lí )
+) Xét \(x< \dfrac{1}{5}\) ta có:
\(\dfrac{1}{5}-x-x=\dfrac{1}{3}\)
\(\Rightarrow2x=\dfrac{-2}{15}\)
\(\Rightarrow x=\dfrac{-1}{15}\) ( t/m )
Vậy \(x=\dfrac{-1}{15}\)
Ta có: \(\left|x-\dfrac{1}{5}\right|-x=\dfrac{1}{3}\)
\(\Rightarrow\left|x-\dfrac{1}{5}\right|=\dfrac{1}{3}+x\)
+) \(TH1:x-\dfrac{1}{5}\ge0\Rightarrow x\ge\dfrac{1}{5}\)
Khi đó: \(x-\dfrac{1}{5}=\dfrac{1}{3}+x\)
\(\Rightarrow x-x=\dfrac{1}{5}+\dfrac{1}{3}\)
\(\Rightarrow0=\dfrac{8}{15}\) (loại)
+) \(TH2:x-\dfrac{1}{5}< 0\Rightarrow x< \dfrac{1}{5}\)
Khi đó: \(-x+\dfrac{1}{5}=\dfrac{1}{3}+x\)
\(\Rightarrow-x-x=\dfrac{-1}{5}+\dfrac{1}{3}\)
\(\Rightarrow-2x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-1}{15}\left(tm\right)\)
Vậy \(x=\dfrac{-1}{15}.\)