Để căn thức \(\frac{1}{\sqrt{x-2\sqrt{x}-1}}\) có nghĩa thì \(\left\{{}\begin{matrix}\sqrt{x-2\sqrt{x}-1}\ne0\\x-2\sqrt{x}-1\ge0\end{matrix}\right.\Leftrightarrow x-2\sqrt{x}-1>0\)
\(\Leftrightarrow x-2\sqrt{x}+1-2>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-2>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>2\)
\(\Leftrightarrow\sqrt{x}-1>\sqrt{2}\)
\(\Leftrightarrow\sqrt{x}>\sqrt{2}+1\)
\(\Leftrightarrow x>\left(\sqrt{2}+1\right)^2=2+2\sqrt{2}+1=3+2\sqrt{2}\)