Mình biết làm nhưng trình bày ra dài lắm
Tạ Duy Phương làm đi mà, năn nỉ ý, làm đc bài này thì tớ đc 100k đó
Bài cơ bản của kĩ thuật Cô-si ngược dấu
Trời ơi có biết làm không z, cô quản lí làm dùm
Mình biết làm nhưng trình bày ra dài lắm
Tạ Duy Phương làm đi mà, năn nỉ ý, làm đc bài này thì tớ đc 100k đó
Bài cơ bản của kĩ thuật Cô-si ngược dấu
Trời ơi có biết làm không z, cô quản lí làm dùm
CM các BĐT
với các số dương a,b,c,d
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\)
help meeeeeee
Cho a,b,c là các số thực dương,cmr:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho các số dương a,b,c.
\(CMR:\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{c^2}{b+c}+\frac{a^2}{c+a}+\frac{b^2}{a+b}\)
Cho a, b, c là các số dương.
CMR:\(\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}+\frac{a^2}{c\left(c^2+a^2\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho các số thực dương a , b , c . Chứng minh rằng :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{c^2}{b+c}+\frac{a^2}{c+a}+\frac{b^2}{a+b}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Với a,b,c là các số thực dương.
Chứng minh:\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\frac{a^3+b^3+c^3}{3}\)
Cho a, b, c là các số dương. Chứng minh rằng: \(\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}+\frac{a^2}{a\left(c^2+a^2\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)