1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Cho a, b, c > 0. CMR :
\(\dfrac{\sqrt{a^2+b^2}}{c}+\dfrac{\sqrt{b^2+c^2}}{a}+\dfrac{\sqrt{a^2+c^2}}{b}\ge2\left(\dfrac{a}{\sqrt{b^2+c^2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\)
Cho a,b,c>0.Cmr
\(1< \dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{b^2+c^2}}+\dfrac{c}{\sqrt{c^2+a^2}}\le\dfrac{3\sqrt{2}}{2}\)
P/s: nhân tiện làm rõ giùm BĐT \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)(với \(a\ge b\ge c\))
1) Rút gọn các đa thức:
a) \(\dfrac{1}{m.n^2}\cdot\sqrt{\dfrac{m^2.n^4}{5}}\) với \(m< 0;n\ne0\)
b) \(\sqrt{\dfrac{m^4}{9-12m+4m^2}}\) với \(m\le1,5\)
c) \(\dfrac{a-1}{\sqrt{a}-1}:\sqrt{\dfrac{\left(a-1\right)^4}{a-2\sqrt{a}+1}}\) với \(0< a< 1\)
d) \(\dfrac{a-b}{\sqrt{a+b}}:\sqrt{\dfrac{\left(a-b\right)^2}{a\left(a+b\right)}}\) với \(a>b>0\)
2) Chứng minh rằng:
\(\dfrac{a-b}{b^2}:\sqrt{\dfrac{a^2-2ab+b^2}{a^2.b^2}}=\left\{{}\begin{matrix}a\left(a>b>0\right)\\-a\left(0< a< b\right)\end{matrix}\right.\)
Cho a , b , c >0 . CMR: \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a , b ,c >0 . cmr: \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Bài 1: Rút gọn
a) \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) với x>0 x≠4
b)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}-1}\right).\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
Bài 2: Cho P=\(\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) với a>0, a≠1, a≠2
a)Rút gọn P
b)Tìm a ∈ Z để P có giá trị nguyên
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P