1.2.3+2.3.4+3.4.5+...............+19.20.21
chứng tỏ rằng:
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}< \frac{1}{4}\)
Rút gọn tổng sau:
a, A = 1/2+1/2^2+1/2^3+....+1/2^20
b, B = 1/3+1/3^2+1/3^3+....+1/3^21
c, C = 1/1.2.3+1/2.3.4+1/3.4.5+......+1/19.20.21
Rút gọn tổng sau:
a, A = 1/2+1/2^2+1/2^3+...+1/2^20
b, B= 1/3+1/3^2+1/3^3+...+1/3^21
c, C= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/19.20.21
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\)
tìm x
\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right).x=5\)
tính s=1/2.3.4+1/2.3.4+1/3.4.5+...+1/43.44.45
P = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/n(n+1)(n+2)
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/48.49.50 .
1.2.3+2.3.4+3.4.5+...+98.99.100