cho(O;R) và điểm A nằm ngoài đường tròn.Qua A kẻ tiếp tuyến AB với (O;R) (B là tiếp điểm),Tia Ax nằm giữa AB và AO cắt (O)tại C và D .(C nằm giữa A và D).M là trung điểm của dây CD,kẻ BH vuông góc với AO tại H.a,Tính OH,OA theo R.b,Chứng minh 4 điểm A,B,M,O cùng thuộc một đường tròn.c,Gọi E là giao điểm của OM và HB.Chứng minh EC là tiếp tuyến của (O;R)
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường tròn ( O ; R ) và điểm M nằm ngoài đường tròn sao cho OM= 2R. Từ M kẻ tiếp tuyến MB ( B là các tiếp điểm ). Vẽ dây BC vuông góc với OM tại H
a) C/m: BH = HC và OH là tia phân giác của góc BOC
b) C/m MB = MC và OC vuông góc với CM
c) Tính diện tích tứ giác OBMC theo R
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho điểm M nằm ngoài (O; R). Vẽ tiếp tuyến MA đến đường tròn ( A là tiếp điểm). Vẽ dây AB vuông góc với OM tại H.
a/ Cm: OH.OM = R2
b/ Cm : MB là tiếp tuyến của (O).
c/ Cm 4 điểm A,B,O,M cùng thuộc 1 đường tròn.
d/ MO cắt (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác MAB.
Cho đường tròn (O,R) cố định.Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm).Gọi H là giao điểm của OM,AB
a) CM: OM vuông góc với AB và OH.OM=R2
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P),gọi I là trung điểm NP (I khác O).Chứng minh: A,M,O,I thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA,MB theo thứ tự C,D.Biết MA=5cm ,tính chu vi tam giác MCD
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA,MB lần lượt tại E,F.Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất
~Giải nhanh giùm mình nhé~
Bài 4. (3,5 điểm) Cho điểm M nằm ngoài đường tròn (0;R) sao cho OM = 2R. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (0) (A, B là các tiếp điểm). Kẻ đường kính AC của đường tròn (0). Gọi H là giao điểm của AB và OM. 1) Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. 2) Tính tỷ số OH/OM. 3) Gọi E là giao điểm của CM và đường tròn (0). Chứng minh HE vuông góc BE.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA và MB và cát tuyến MCD với đường tròn (O). gọi H là giao điểm của OM và AB
a) CM Tứ giác AOBM nội tiếp
b CM: MH.MO=MC.MD
c) tiếp tuyến tại C của đường tròn (O) cắt MA ,MB theo thứ tự tại E và F Đường vuông góc với MO tại O cắt 2 tiếp tuyến MA ,MB tai P và Q .CM góc POE =góc OFQ
d) CM PE+QF>= PQ
Từ điểm M ngoài đường tròn (O;R), vẽ 2 tiếp tuyến MA,MB với dtròn O ( A;B là 2 tiếp điểm). Vẽ đường kính AC cắt đtròn (O) tại D, gọi H là giao điểm AB va OM
a) CM OM vuong góc AB, BC // OM
b) Vẽ OI vuong góc CD, OI cắt AB tai N. Cm: OI.ON=OH.ON và OAI=ONA
c) E la giao diem AB và CD, OI cắt AB tại N. 1/BH + 1/ BN= 1/BE
cm dùm cau c