Cho đường tròn (O;R). Từ A trên (O) kẻ tiếp tuyến (d) với O trên (d) lấy M bất kì (M≠A). Kẻ cát tuyến M,N,P. Gọi K là trung điểm của NP, kẻ tiếp tuyến MB, kẻ AC⊥MB, BD⊥MA. Gọi H là giao điểm của AC và BD; I là giao điểm của OM và AB. Chứng minh:
a) 5 điểm O,K,A,M,B cùng thuộc một đường tròn.
b) OI.OM=R2 và OI.IM=IA2
c) OAHB là hình thoi.
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Cho (O;R) và một điểm A nằm ngoài đường tròn sao cho OA=2R. Các tiếp tuyến AB, AC( B, C là các tiếp điểm). Gọi H là giao điểm của OA với BC, AO cắt cung nhỏ BC tại H và cung lớn BC tại N. a/ chứng minh OA vuông góc với AC và R^2=OA*HM. b/ vẽ các tiếp tuyến bất kì A, D, E. Gọi K là trung điểm của DE. Chứng minh 5 điểm A, B, O, K, C thuộc một đường tròn
Từ điểm M nằm ngoài đường tròn (O;R).Vẽ tiếp tuyến MA, MB và cát tuyến MEF với đường tròn (O).(A, B là 2 tiếp điểm, ME<MF, tia MF nằm giữa hai tia Ma, MO)
a. CM:OM là trung trực của AB
b. Gọi U là trung điểm EF. Đường thẳng MA cắt đường thẳng OI tại D, OA cắt MI tại K. CM:DK vuông góc với MO
c. Gọi H là giao điểm của AB với MI. Tính đoạn HI, biết tam giác MAB đều và OI=R/2
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm). Gọi H là giao điểm của OA và BC. ( VẼ HÌNH HỘ MÌNH NHÉ) a) Cm: 4 điểm A,B,O,C cùng thuộc 1 đg tròn (CM theo 2 tam giác nội tiếp) b) Kẻ đg kính BD. Gọi E là giao điểm của đoạn thẳng AD với (O), E ko trùng với D. Cm: DE/BE=BD/BA và tính góc HEC
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Cho (O;R).từ điểm A nằm ngoài (O) sao cho OA=2R vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm ) kẻ dây BC vuông góc OA a) chứng minh : AC là tiếp tuyến của đường tròn(O) b)Qua O vẽ đường vuông góc với OC cắt AB tại M. Chứng minh rằng: tam giác OMA tà tam giác cân c) gọi N là giao điểm của OA với đường tròn (O) ,tia MN Cắt AC tại K .chứng minh rằng:MK là tiếp tuyến của đường tròn (O) d) tính chu vi tam giác AMK theo R
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.