Từ điểm P nằm ngoài đường tròn (O) vẽ 2 tiếp tuyến PM và PN với (O) , ( M,N là 2 tiếp điểm vẽ dây cung MQ song song với PN ; PQ cắt đường tròn (O) tại điểm thứ 2 là A ( A khác Q ) . a) chứng minh tứ giác PMON nội tiếp được trong 1 đường tròn. b) chứng minh PN2 = PA × PQ c) tia MA cắt PN tại K . Chứng minh K là trung điểm của NP .
a) Xét tứ giác PMON có
\(\widehat{PMO}\) và \(\widehat{PNO}\) là hai góc đối
\(\widehat{PMO}+\widehat{PNO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: PMON là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)