Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
Cho (O;R).A nằm ngoài đường tròn sao cho OA=2R.Kẻ tiếp tuyến AB và AC với (O) (B,C là tiếp điểm) Đoạn thẳng OA cắt (O) tại I đường thẳng qua O và vuông góc với OB cắt AC tại K a) chứng minh tam giác OAK cân tại A b)CB vuông góc với OA c) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của (O)
Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.