Từ điểm M nằm ngoài (O) vẽ hai tiếp tuyến MA, MB với (O) tại A, B. Biết góc AMB bằng 50 độ thì góc nội tiếp chắn cung nhỏ AB bằng
A. 65 độ B. 75 độ C. 45 độ D. 130 độ
Gi ải chi tiết ạ
Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM=2R. Từ M vẽ tiếp tuyến MA và MB với đường (O).
a. CM: Tứ giác MAOB nội tiếp và MO vuông góc AB
b. CM: Tam giác AMB đều và tính AM theo R
c. Qua điểm C thuộc cung nhỏ AB vẽ tiếp tuyến với đường tròn (O) cắt AM tại E và cắt MB tại F. OF cắt AB tại K. OE cắt AB tại H. CM:chu vi tam giác MEF không đổi khi điểm C chạy trên cung nhỏ AB.
d. CM: EK vuông góc OF
e. CM: EF=2HK
cho đường tròn (o,R) . Từ một điểm M nằm ngoài đường tròn (O) , vẽ hai tiếp tuyến MA,MB đến (O) . Qua một điểm N nằm trên cung nhỏ AB vẽ tiếp tuyến thứ ba cắt hai tiếp tuyến trên tại P,S.
1, Chứng minh tứ giác OAMB nội tiếp.
2, Biết AMB= 60 , tính theo R:
a, Chu vi tam giác MPQ, độ dài đoạn AB.
b, Diện tích phần tứ giác OAMB nằm ngoài đường tròn (O)
Từ điểm M nắm ngoài (O;R) , vẽ 2 tiếp tuyến MA , MB , vẽ cát tuyến MCD (O nằm ngoài góc AMO ). Gọi H là giao điểm của OM và AB .
a) c/m tứ giác MAOB nội tiếp và OM vuông góc AB tại H .
b) c/m MC.MD=MA.MB .
c) c/m tứ giác CHOD nội tiếp , từ đó suy ra HA là tia phân giác của góc CHD
giải giúp mik nha cảm ơn
từ một điểm M nằm ngoài đường tròn tâm O vẽ hai tia tiếp tuyến MA và MB với đường tròn. trên cung nhỏ AB lấy một điểm C. vẽ CD, CE lần lượt vuông góc với AB, MA. chứng minh: a, AECD là tứ giác nội tiếp , b, ABC=EDC
Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho hai tiếp tuyến MA, MB của (O) vuông góc với nhau (A, B là các tiếp điểm). Gọi C là một điểm thuộc cung nhỏ AB. Tiếp tuyến của (O) tại C cắt AM, BM lần lượt P, Q.
a) Tính theo R chu vi AMPQ và POQ
b) Chứng minh BOC = 2QCB
Cho đường tròn tâm O từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA, MB. Vẽ cát tuyến MCD lần lượt cắt cung nhỏ AB tại C và cung lớn AB tại D. Vẽ AE vuông góc với BD. Lấy F là trung điểm AE. FD cắt (O) tại P. Vẽ MP cắt (O) tại S. C/m S,O,B thẳng hàng
Từ điểm M nằm bên ngoài đường tròn (o), ta vẽ hai tiếp tuyến MA, MB với đường tròn. Trên cung nhỏ AB lấy điểm C. Vẽ CD, CE, CF lần lượt vuông góc với AB,MA,MB.
a, CM: AECD,BFCD nội tiếp
b, CD2=CE.CF
Giúp mình với ạ Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho hai tiếp tuyến MA, MB của (O) vuông góc với nhau (A, B là các tiếp điểm). Gọi C là một điểm thuộc cung nhỏ AB. Tiếp tuyến của (O) tại C cắt AM, BM lần lượt P, Q. a) Tính theo R chu vi AMPQ và POQ b) Chứng minh BOC=2.QCB