cho đường tròn(o;r), từ điểm a ở bên ngoài đường tròn kẻ 2 tiếp tuyến ab, ac với đường tròn(o) (b,c là tiếp điểm) từ b kẻ đường thẳng song song ac cắt đường tròn(o) tại d(d khác b), đường thẳng ad cắt đường tròn (o) tại e( e khác d) a) chứng minh tứ giác aboc nội tiếp b) chứng minh ab²= ae×ad c) giả sử oa=2r. Tính góc bec và diện tích obac d) so sánh góc cea và góc bec
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
Từ điểm A nằm ngoài (O;R) kẻ hai tiếp tuyến AB và AC (B và C là hai tiếp điểm). Gọi H là trung điểm của BC.
a) Chứng minh O, A, B, C cùng thuộc đường tròn và 3 điểm O, H, A thẳng hàng.
b) Kẻ đường kính CD. AD cắt đường tròn (O)tại điểm thứ hai là E và cắt đường tròn đường kính OA tại I. Chứng minh I là trung điểm của DE.
c) OI cắt BC tại F, Gọi G là giao điểm của OA và FE, OE cắt BC tại M. Chứng minh rằng: GM // DE.
cho ( o , R ) và đường thẳng d không đi qua O cắt đường tròn ( o) tại 2 điểm A , B . Từ điểm C ở ngoài đường tròn (O) ,C thuộc d sao cho CB < CA kẻ 2 tiếp tuyến CM,CN với đưởng tròn .gọi H là trung điểm của dây AB OH cắt CN tại K
1.Chứng minh:KN.KC=KH.KO
2. chứng minh:5 điểm M,H,O,N,C cùng thuộc một đường tròn
3. Đoạn thẳng CO cắt MN TẠI i.Chứng minh CIB^ = OAB^
4 , Một đường thẳng qua O và // với MN cắt CM , CN lần lượt tại E và F . Xác định vị trí của điểm C trên đường thẳng D để dienj tích tam giác CEF nhỏ nhất
Cho đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Qua C kẻ đường thẳng song song với AB cắt đường tròn ở D. kẻ AH vuông góc CD.
a, AH là tiếp tuyến của đường tròn
b, Góc ACD = Góc DAH
c, \(AH^2=HC\cdot HD\)
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck
cho duong tron(o) và một điểm a ở ngoài đường tròn qua a kẻ 2 tiếp tuyến ab ac với đường tròn h là giao điểm của đthẳng an và đtròn (0) tia bm cat đthẳng ao tại i
CM: amhc nội tiếp