Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tiến sĩ Rùa

Trong phương vuông góc với Tọa độ Oxy, cho parabol (P): y = x² - 4mx + 3m² + 1, điểm A (0;3m) và đường thẳng (d): y = 2x + 3m-2 với m là tham số. Giả sử giao điểm của (d) và (P) là hai điểm M và N thì diện tích tam giác AMN bằng 4. Tìm giá trị của m

Lê Thị Thục Hiền
7 tháng 7 2021 lúc 22:56

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2-4mx+3m^2+1=2x+3m-2\)

\(\Leftrightarrow x^2-2x\left(2m+1\right)+3m^2-3m+3=0\) (1)

Để (P) và (d) cắt nhau tại hai điểm M;N khi pt (1) có hai nghiệm pb

\(\Leftrightarrow\Delta>0\Leftrightarrow m^2+7m-2>0\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{-7+\sqrt{57}}{2}\\m< \dfrac{-7-\sqrt{57}}{2}\end{matrix}\right.\)

Gọi \(M\left(x_1;2x_1+3m-2\right);N\left(x_2;2x_2+3m-2\right)\) là hai giao điểm của (P) và (d)

\(\Rightarrow\overrightarrow{AM}\left(x_1;2x_1-2\right);\overrightarrow{AN}\left(x_2;2x_2-2\right)\)

(CT tính nhanh diện tích) \(S_{AMN}=\dfrac{1}{2}\left|x_1\left(2x_2-2\right)-x_2\left(2x_1-2\right)\right|\)\(=\dfrac{1}{2}\left|-2x_1+2x_2\right|=\left|x_2-x_1\right|=4\)

\(\Rightarrow\left(x_2-x_1\right)^2=16\)

\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_1x_2=16\)\(\Leftrightarrow\left(4m+2\right)^2-4\left(3m^2-3m+3\right)=16\)

\(\Leftrightarrow4m^2+28m-24=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-7+\sqrt{73}}{2}\\m=\dfrac{-7-\sqrt{73}}{2}\end{matrix}\right.\)(tm)

Vậy...


Các câu hỏi tương tự
Ngọc Dao
Xem chi tiết
Phạm Hoangg Hai Anh
Xem chi tiết
Bảo Lê
Xem chi tiết
Bảo Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
HuỳnhNhi
Xem chi tiết
HEX_trên amazon
Xem chi tiết
Anh2Kar六
Xem chi tiết
Đồng Thủy
Xem chi tiết