Đáp án A
Ta có:
O A → = 2 ; − 1 ; 5 i → = 1 ; 0 ; 0 ⇒ O A → , i → = 0 ; 5 ; 1
Mặt phẳng α có vectơ pháp tuyến n → = 0 ; 5 ; 1 ⇒ b c = 5
Đáp án A
Ta có:
O A → = 2 ; − 1 ; 5 i → = 1 ; 0 ; 0 ⇒ O A → , i → = 0 ; 5 ; 1
Mặt phẳng α có vectơ pháp tuyến n → = 0 ; 5 ; 1 ⇒ b c = 5
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; -5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)
A. n → = ( 1 ; 1 2 ; 1 5 )
B. n → = ( 1 ; - 1 2 ; - 1 5 )
C. n → = ( 1 ; - 1 2 ; 1 5 )
D. n → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian Oxyz, cho ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Mặt phẳng (P) chứa BC và cùng tạo với hai mặt phẳng (ABC),(OBC) một góc α > 45 0 có một véctơ pháp tuyến n → (a;b;c) với a,b,c là các số nguyên và c là một số nguyên tố. Giá trị biểu thức ab+bc+ca bằng
A. 1.
B. 18.
C. 4.
D. 71.
Trong không gian Oxyz, cho ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Mặt phẳng (P) chứa BC và cùng tạo với hai mặt phẳng (ABC),(OBC) một góc α < 45 ° có một véctơ pháp tuyến n → (a;b;c) với a,b,c là các số nguyên và c là một số nguyên tố. Giá trị biểu thức ab+bc+ca bằng
A. 1.
B. 18.
C. 4.
D. 71.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC) ?
A. n 1 → = ( 1 ; 1 2 ; 1 5 )
B. n 2 → = ( 1 ; - 1 2 ; - 1 5 )
C. n 3 → = ( 1 ; - 1 2 ; 1 5 )
D. n 4 → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A( 1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)?
A. n 1 ⇀ = 1 ; 1 2 ; 1 5
B. n 2 ⇀ = 1 ; - 1 2 ; - 1 5
C. n 3 ⇀ = 1 ; - 1 2 ; 1 5
D. n 4 ⇀ = 1 ; 1 2 ; - 1 5
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1;0;1), B(3;-2;0), C(1;2;-2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến (P) lớn nhất biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:
A. n → = 2 ; - 2 ; - 1
B. n → = 1 ; 0 ; 2
C. n → = - 1 ; 2 ; - 1
D. n → = 1 ; 0 ; - 2
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz, cho điểm H(a;b;c) với a,b,c là các số thực thay đổi thoả mãn ab+bc+ca=-1. Mặt phẳng ( α ) qua H và cắt các trục Ox,Oy,Oz lần lượt tại A, B,C sao cho H là trực tâm của tam giác ABC. Mặt cầu tâm O tiếp xúc với (α) có bán kính nhỏ nhất bằng
A. 1.
B. 2.
C. 2 .
D. 3 .
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).