Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;-2;-3); B(1;1;1) và hai đường thẳng ∆ 1 : x - 2 1 = y - 2 4 = z + 6 - 3 ; ∆ 2 : x - 2 1 = y + 3 - 4 = z - 4 3 . Gọi m là số mặt phẳng (P) tiếp xúc với mặt cầu đường kính AB đồng thời song song với cả hai đường thẳng ∆1;∆2; n là số mặt phẳng (Q), sao cho khoảng cách từ A đến (Q) bằng 15, khoảng cách từ B đến (Q) bằng 10. Chọn mệnh đề đúng trong các mệnh đề sau.
A. m + n = 1
B. m + n = 4
C. m + n = 3
D. m + n = 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 3), B(-1; 4; 1). Viết phương trình mặt cầu (S) đường kính AB
A. ( S ) : x 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 3
B. ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 12
C. ( S ) : ( x + 1 ) 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 12
D. ( S ) : x 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 12
Trong hệ tọa độ Oxyz, cho hai điểm A(1; 2; 3), B(-1; 4; 1). Phương trình mặt cầu đường kính AB là
A. ( x + 1 ) 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 12
B. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 12
C. x 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 3
D. x 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 12
Trong không gian Oxyz, cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Đường thẳng AB có vecto chỉ phương là :
A. u 3 → 2 ; 1 ; − 2
B. u 2 → 1 ; − 1 ; 0
C. u 4 → 0 ; 1 ; − 1
D. u 1 → 1 ; 2 ; 1
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4 và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức 2 M A 2 + M B 2
A. 5
B. 123
C. 65
D. 112
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian Oxyz, cho tam giác ABC với A(2;3;3), đường trung tuyến kẻ từ đỉnh B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng AB có một véctơ chỉ phương là
A. u 1 → 0 ; 1 ; - 1
B. u 2 → 2 ; 1 ; - 1
C. u 3 → 1 ; 2 ; 1
D. u 4 → 1 ; - 1 ; 0
Trong không gian Oxyz, cho mặt cầu (S)có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Tọa độ tâm I và bán kính R của (S) là
A. I(1;2;3) và R=5.
B. I(-1;-2;-3) và R=5.
C. I(1;2;3) và R=25.
D. I(-1;-2;-3) và R=25
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và B(2;-l;4). Phương trình mặt cầu đường kính AB là
A. x + 1 2 + y 2 + z + 3 2 = 3
B. x 2 + y - 1 2 + z - 3 2 = 3
C. x - 1 2 + y 2 + z - 3 2 = 3
D. x - 1 2 + y 2 + z - 3 2 = 3
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2