Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):6x + 3y - 2z + 24 = 0 và điểm A(2;5;l). Tìm toạ độ hình chiếu vuông góc H của A trên (P).
A. H(4; 2; 3)
B. H(4; 2; -3)
C. H(4; -2; 3)
D. H(-4; 2; 3)
Trong không gian với hệ trục tọa độ vuông góc Oxyz, cho mặt phẳng (P): 2x + y + 6z – 1 = 0 và hai điểm A(1; –1;0), B(–1;0;1). Hình chiếu vuông góc của đoạn thẳng AB trên mặt phẳng (P) có độ dài bao nhiêu?
A. 255 61
B. 237 41
C. 137 41
D. 155 61
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;1;0),B(0;1;1),C(2;1;2) và mặt phẳng (P):x+y-z-6=0. Điểm M(a;b;c) thuộc (P) sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Giá trị biểu thức ab+bc+ca bằng
A. 16 3
B. 80 9
C. 32 3
D. 32 9
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A − 1 ; 0 ; 1 , B − 2 ; 3 ; 0 , C 1 ; 1 ; 1 , D 2 ; 1 ; 1 .Tìm hình chiếu của D lên mặt phẳng (ABC).
A. H 107 54 ; − 28 27 ; 61 54
B. H 107 54 ; 28 27 ; 61 54
C. H 107 27 ; 28 27 ; 61 54
D. H 107 54 ; 28 27 ; 61 27
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A 1 ; 2 ; 3 . Gọi A 1 A 2 A 3 lần lượt là hình chiếu vuông góc của A lên các mặt phẳng O y z , O z x , O x y . Phương trình của mặt phẳng A 1 A 2 A 3 là
A. x 1 + y 2 + z 3 = 0
B. x 3 + y 6 + z 9 = 1
C. x 1 + y 2 + z 3 = 1
D. x 2 + y 4 + z 6 = 1
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua điểm M(1;1;1) và vuông góc với hai mặt phẳng (Oxy),(Ozx).
A. y-1=0.
B. x-1=0.
C. z-1=0.
D. x+z-2=0.
Trong không gian với hệ toạ độ Oxyz, phương trình mặt phẳng qua điểm A(1;1;1) và vuông góc với đường thẳng d: x = 3 + t y = 1 + 2 t z = - 1 + 3 t là
A. 3x+y-z-3=0.
B. x+2y+3z-6=0.
C. 3x+y-z+3=0.
D. x+2y+3z+6=0.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;0),B(0;1;1),C(1;0;1). Xét điểm D thuộc mặt phẳng Oxy sao cho tứ diện ABCD là một tứ diện đều. Kí hiệu D ( x 0 ; y 0 ; z 0 ) là tọa độ của điểm D. Tổng x 0 + y 0 bằng
A. 0
B. 1
C. 2
D. 3
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;1;0), C(0;0;1). Số mặt phẳng đi qua gốc toạ độ O và cách đều ba điểm A, B, C là
A. 8
B. 6
C. 4
D. 2