Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Trong các hình chữ nhật có chu vi là 24cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Gọi chiều dài của hình chữ nhật là x (cm, \(0 < x < 12\))

Chiều rộng của hình chữ nhật là \(12 - x\left( {cm} \right)\)

Diện tích của hình chữ nhật là: \(x\left( {12 - x} \right) =  - {x^2} + 12x\;\left( {c{m^2}} \right)\)

Đặt \(S\left( x \right) =  - {x^2} + 12x,x \in \left( {0;12} \right)\)

\(S'\left( x \right) =  - 2x + 12,S'\left( x \right) = 0 \Leftrightarrow x = 6\left( {tm} \right)\)

Bảng biến thiên: 

Do đó, trong các hình có cùng chu vi thì hình chữ nhật có diện tích lớn nhất là \(36c{m^2}\).