a: góc CAD=1/2*sđ cung CD=90 độ
b: Xét ΔACD vuông tại A có AK là đường cao
nên CK*CD=CA^2
=>OI^2=1/4*CK*CD
c: góc AIO=góc AKO=90 độ
=>AIKO là tư giác nội tiếp
a: góc CAD=1/2*sđ cung CD=90 độ
b: Xét ΔACD vuông tại A có AK là đường cao
nên CK*CD=CA^2
=>OI^2=1/4*CK*CD
c: góc AIO=góc AKO=90 độ
=>AIKO là tư giác nội tiếp
Cho nửa đường tròn tâm O đường kính AB , dây CD có độ dài không đổi và khác AB . Gọi I là hình chiếu vuông góc của O trên dây CD . a) Chứng minh I là trung điểm của CD . b) Gọi H K, theo thứ tự là hình chiếu vuông góc của A B, trên CD . Chứng minh I là trung điểm của HK . c) Gọi E là hình chiếu vuông góc của I trên AB . Chứng minh rằng . Diện tích tam giác ACB.diện tích tam giác ADB=IO.AB d*) Tìm vị trí của dây CD để diện tích của tứ giác AHKB là lớn nhất? Làm ơn giúp mình câu c,d với ạ. Mình xin chân thành cảm ơn
Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD.
Chứng minh rằng CH = DK ?
Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh: CH=DK
(vẽ hình giúp mình luôn nha)
Bài 1: Cho tứ giác ABCD có góc A = C = 90°
a, Chứng minh 4 đỉnh của tứ giác cùng thuộc một đường tròn
b, chứng minh AC ≤ BD trong trường hợp nào thì AC = BD
Bài 2: đường tròn tâm O bán kính 5cm và dây AC = 8. Gọi I là trung điểm của AC Trên tia OI cắt đường tròn tại B
a,Tính độ dài đoạn thẳng AB
b, Gọi D là điểm đối xứng với B qua O .Tính khoảng cách từ tâm O đến đường thẳng CD và diện tích tứ giác ABCD
Mọi người vẽ hình và chứng minh chi tiết giúp mình với ạ. Mình cảm ơnn
Cho đường tròn (O) đường kính AD. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH=DK
(ko cần vẽ hình)
Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại H. Lấy I là trung điểm của BC.
a) Gọi K là điểm đối xứng của H qua I. CMR: tứ giác BHCK là hình bình hành
b) Xác định tâm O của đường tròn qua các điểm A, B, K, C
c) Chứng minh: OI // AH
d) CMR: BE.BA + CD.CA = \(BC^2\)
Cho đường tròn (O; R), dây AB khác đường kính . Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B đến AC và AD. Chứng minh rằng :
a) Bốn điểm A, H, B, K thuộc cùng một đường tròn
b) HK < 2R
Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH=DK
Gợi ý: Kẻ OM vuông góc vớiCD.
giải giúp mình với.
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK
Gợi ý : Kẻ OM vuông góc với CD