a: \(A=4\sqrt{5}+8-8\left(\sqrt{5}-1\right)\)
\(=4\sqrt{5}+8-8\sqrt{5}+8=16-4\sqrt{5}\)
b: \(=20+15\sqrt{2}+6\sqrt{2}-4=21\sqrt{2}+16\)
c: \(=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)=16-3=13\)
a: \(A=4\sqrt{5}+8-8\left(\sqrt{5}-1\right)\)
\(=4\sqrt{5}+8-8\sqrt{5}+8=16-4\sqrt{5}\)
b: \(=20+15\sqrt{2}+6\sqrt{2}-4=21\sqrt{2}+16\)
c: \(=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)=16-3=13\)
Bài 1: Tính
a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên.
Helpp!!
Thực hiện từng bước của phép tính:
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
1) thực hiện phép tính
a) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
b) \(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
c) \(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}\)
giúp mk vs ạ mk đang cần gấp
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
1. Tính
a. \(\left(3\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-3\sqrt{2}\right)\)
b. \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}\)
c. \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)
d. \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
Bài 1: Tính
a) \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)
b) \(\left(\sqrt{14}-\sqrt{10}\right)\sqrt{6+\sqrt{35}}\)
c) \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
Bài 2: Cho biểu thức
A = \(\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
a) Rút gọn A
b) Tìm x để A = 2
c) Tìm các số nguyên của x để A ∈ Z
Tính: a, \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\left(\dfrac{1}{2}\sqrt{2}\right)\)
b, \(\left(\dfrac{4}{5}\sqrt{5}-\dfrac{1}{3}\sqrt{\dfrac{1}{5}}+3\sqrt{20}+\dfrac{1}{2}\sqrt{245}\right)\div\sqrt{5}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)