\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}=\frac{3}{5}\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=1\left(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\right)\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/10-1/70)
C=7×6/70
C=3/5
Cách 2:
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10}-\frac{1}{70}\)
\(\Rightarrow\frac{1}{7}A=\frac{3}{35}\)
\(\Rightarrow A=\frac{3}{35}:\frac{1}{7}=\frac{3}{5}\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{10}-\frac{1}{70}\)
\(\Rightarrow\frac{1}{7}A=\frac{3}{35}\)
\(\Rightarrow A=\frac{3}{35}:\frac{1}{7}=\frac{3}{5}\)