AB/1=BC/2=AC/căn 3
=>AB/0,5=BC/1=AC/căn 3/2
AB/sinC=BC/sinA=AC/sinB
=>sinC=1/2 và sin A=1 và sin B=căn 3/2
=>góc C=30 độ; góc A=90 độ; góc B=60 độ
AB/1=BC/2=AC/căn 3
=>AB/0,5=BC/1=AC/căn 3/2
AB/sinC=BC/sinA=AC/sinB
=>sinC=1/2 và sin A=1 và sin B=căn 3/2
=>góc C=30 độ; góc A=90 độ; góc B=60 độ
Cho tam giác ABC vuông tại A , có AB=3cm , AC=4cm , đường cao AH (H\(\in\)BC )
1)Tính BC ,AH
b) Kẻ đường phân giác AI của góc BAC (I\(\in\)BC) .Tính BI , CI
c) Chứng minh : \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AI}\)
tam giác abc có góc a = 90 độ ab = 3cm ; ac = 4cm : tính \(\dfrac{ab}{bc}\);\(\dfrac{ac}{bc}\);\(\dfrac{ab}{ac}\);\(\dfrac{ac}{ab}\)
tam giác abc có góc a = 90 độ ab = 3cm ; ac = 4cm : tính \(\dfrac{ab}{bc}\);\(\dfrac{ac}{bc}\);\(\dfrac{ab}{ac}\);\(\dfrac{ac}{ab}\)
cho tam giác ABC có góc A=60 độ,AD là phân giác của góc A.chứng minh \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{\sqrt{3}}{AD^2}\)
Cho △ ABC vuông tại A(AB<AC), có AH là đường cao
1.Biết BC=8cm và \(\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{3}\)
a) tính số đo góc ACB
B) tính độ dài các đoạn thẳng AB,HB,AH
c) tính giá trị của biểu thức cos C-tan B+cot B
2) Gọi E và F lần lượt là h/chiếu của H trên AB,AC,gọi M và N lần lượt là h/chiếu của E và F trên BC.CM\(\sqrt{MB}+\sqrt{NC}=\sqrt{BC}\)
Cho tam giác ABC có góc A = 60 độ, phân giác AD. CMR :
\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{3}}{AD}\)
cho tam giác ABC không cân, BD và CE là hai đường phân giác trong của góc B và góc C cắt nhau tại I sao cho: ID=IE
a) Tính góc BAC
b) chứng minh: \(\dfrac{3}{AB+BC+CA}=\dfrac{1}{AB+BC}+\dfrac{1}{BC+AC}\)
cho các số thực dương a,b,c thỏa mãn ab+bc+ca=3.
chứng minh: M=\(\sqrt{\dfrac{bc}{a^2+3}}+\sqrt{\dfrac{ac}{b^2+3}}\sqrt{\dfrac{ab}{c^2+3}}\le\dfrac{3}{2}\)
Cho tam giác ABC vuông tại A , đường cao AH . Biết \(\dfrac{AB}{AC}=\dfrac{1}{\sqrt{3}}\) và HC - HB = 8cm . Tính độ dài các cạnh của tam giác ABC?