S=3-32+33-34+....-32012
<=> 3S=32-33+34-35+....-32013
<=> 3S+S=(32-33+34-35+....-32013)+(3-32+33-34+....-32012)
<=> 4S=-32013+3
<=> \(S=\frac{-3^{2013}+3}{4}\)
\(S=3-3^2+3^3-3^4+........+-3^{2012}\)
\(\Rightarrow3S=3^2-3^3+3^4-3^5+..........-3^{2013}\)
\(\Rightarrow3S+S=4S=3^{2013}+3\)\(\Rightarrow S=\frac{3^{2013}+3}{4}\)