+ \(\frac{1}{n\times\left(n+2\right)}=\frac{\left(n+2\right)-n}{n\times\left(n+2\right)}\)
\(=\frac{n+2}{n\times\left(n+2\right)}-\frac{n}{n\times\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)
+ \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)
\(=5-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=5-\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}+\frac{1}{22}=\frac{50}{11}\)