Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thi Thuý Ha

Tính nhanh

1/3+1/3^2+1/3^3+...+1/3^2007+1/3^2008

l҉o҉n҉g҉ d҉z҉
2 tháng 10 2020 lúc 20:21

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Rightarrow3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}\)

\(2A=3A-A\)

\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{2007}}-\frac{1}{3^{2008}}\)

\(=1-\frac{1}{3^{2008}}\)

\(2A=1-\frac{1}{3^{2008}}\Rightarrow A=\frac{1-\frac{1}{3^{2008}}}{2}\)

Khách vãng lai đã xóa
FL.Han_
2 tháng 10 2020 lúc 20:25

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\)

\(\Leftrightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow A=\frac{3^{2008}-1}{3^{2008}}\div2\)

\(\Leftrightarrow A=\frac{3^{2008}-1}{2.3^{2008}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoàng Quân
Xem chi tiết
Tao Luôn Là Nhà Vô Địch
Xem chi tiết
Nguyen Quang Huy
Xem chi tiết
Phạm Thùy Anh Thư
Xem chi tiết
vu dieu linh
Xem chi tiết
PIKACHU
Xem chi tiết
Lê Anh Minh
Xem chi tiết
NGUYỄN THỊ QUỲNH CHI
Xem chi tiết
Vui Nhỏ Thịnh
Xem chi tiết