\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-1998}{1999}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{1998}{1999}=\dfrac{1}{1999}\)
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{1999}-1\right)\)
\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\cdot\left(\dfrac{1}{4}-\dfrac{4}{4}\right)...\left(\dfrac{1}{1999}-\dfrac{1999}{1999}\right)\)
\(=\dfrac{1-2}{2}\cdot\dfrac{1-3}{3}\cdot\dfrac{1-4}{4}\cdot...\cdot\dfrac{1-1999}{1999}\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-1998}{1999}\)
\(=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-1998}{2\cdot3\cdot4\cdot...\cdot1999}\)
\(=\dfrac{1}{1999}\)