A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{10}}\)
2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
2A - A = \(1-\frac{1}{2^{10}}\)
=> A = \(1-\frac{1}{2^{10}}\)
Ta có : A = 1/2 +1/2^2 + 1/2^3 + ... + 1/2^10
2A = 2 ( 1/2 +1/2^2 + 1/2^3 + ... + 1/2^10 )
2A = 1 + 1/2 + 1/2^2 + ... + 1/2^9
2A - A = A = ( 1 + 1/2 + 1/2^2 + ... + 1/2^9 ) - ( 1/2 + 1/2^2 + 1/2^3 +... + /2^10 )
= 1 - 1/2^10 = ...
Ta có: a=1/2+1/22+......+1/210
2a=1+1/2+1/22+.......+1/29
=>2a-a=1-210
=1023/1024