Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran thi mai anh

Tính giá trị của biểu thức M =\(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)Biết rằng 2a=by+cz , 2b=ax+cz , 2c=ax+by

Nguyễn Việt Lâm
20 tháng 2 2019 lúc 22:42

\(2a+2b+2c=2ax+2by+2cz\Rightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a\Rightarrow a+b+c=a\left(x+2\right)\)

Tương tự ta có \(\left\{{}\begin{matrix}a+b+c=b\left(y+2\right)\\a+b+c=c\left(z+2\right)\end{matrix}\right.\)

Để M xác định thì \(x+2;y+2;z+2\ne0\)

Do đó nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) đúng với mọi x, y, z

\(\Rightarrow\) giá trị M không xác định

Nếu \(a+b+c\ne0\Rightarrow\left\{{}\begin{matrix}x+2=\dfrac{a+b+c}{a}\\y+2=\dfrac{a+b+c}{b}\\z+2=\dfrac{a+b+c}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{a}{a+b+c}\\\dfrac{1}{y+2}=\dfrac{b}{a+b+c}\\\dfrac{1}{z+2}=\dfrac{c}{a+b+c}\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Nguyễn Việt Lâm
20 tháng 2 2019 lúc 22:43

Dòng 5 gõ nhầm \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\) mới đúng


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
My Phạm
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
tran thi mai anh
Xem chi tiết
Nam Phạm An
Xem chi tiết
ITACHY
Xem chi tiết
Kim Hoàng Oanh
Xem chi tiết