\(A=2.\frac{1}{3x}.\frac{1}{y}-\frac{1}{x}.\left(3+\frac{y-1}{y}\right)-\frac{4}{3x.y}+\frac{4}{x}\)
\(A=\frac{2}{3xy}-\frac{3}{x}+\frac{y-1}{xy}-\frac{4}{3xy}+\frac{4}{x}\)
\(A=\frac{-2}{3xy}+\frac{1}{x}-\frac{y-1}{xy}\)
\(A=\frac{-2}{3xy}+\frac{3y}{3xy}-\frac{3y-3}{3xy}\)
\(A=\frac{-2+3y-3y+3}{3xy}\)
\(A=\frac{1}{3xy}\)
Ta có: \(x=105;y=615\)
\(\Rightarrow A=\frac{1}{3.105.615}=\frac{1}{193725}\)
Vậy...