\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\frac{3+39}{7+91}=\frac{42}{98}\)= \(\frac{3}{7}\)
0100101010100101010010101010010010101001010100101
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\frac{3+39}{7+91}=\frac{42}{98}\)= \(\frac{3}{7}\)
0100101010100101010010101010010010101001010100101
TÍNH BÀI TOÁN SAU
\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}\)
Tính:
\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}\)
Tính giá trị cua biểu thức sau
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(\sqrt[7]{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
TÍnh giá trị biểu thức sau:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+........+\frac{1}{1000\sqrt{999}+999\sqrt{1000}}\)
Giá trị biểu thức A = [ \(\sqrt{64}\) + 2.\(\sqrt{(-3)^{2}}\)- 7.\(\sqrt{1,69}\) + 3.\(\sqrt{\dfrac{25}{16}}\)] : (5.\(\sqrt{\dfrac{2}{3}})^{2}\)
Tính A. Các bạn giúp mk với ạ.
rút gọn \(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)
\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}\)
Tính giá trị biểu thức:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Tính giá trị của biểu thức:
a) \(\sqrt{49}+\sqrt{\left(-5\right)^2}-5\sqrt{1,44}+3\sqrt{\frac{4}{9}}\)
b) \(\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2+\left(4.\sqrt{0,5}\right)^2-\left(\frac{1}{5}.\sqrt{125}\right)^2\)