\(\frac{3\sqrt{2}}{4}\left(\frac{8\sqrt{2}}{3}-\frac{8\sqrt{2}}{3}-12\sqrt{2}\right)=\frac{3\sqrt{2}}{4}.\left(-12\sqrt{2}\right)=-18\)
\(\frac{3\sqrt{2}}{4}\left(\frac{8\sqrt{2}}{3}-\frac{8\sqrt{2}}{3}-12\sqrt{2}\right)=\frac{3\sqrt{2}}{4}.\left(-12\sqrt{2}\right)=-18\)
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
BT: Tính
a, \(\sqrt{13}.\sqrt{52}\)
b, \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}\)
c, \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
d, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
e, \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}\)
f, \(\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
g, \(\left(\sqrt{18}+\sqrt{32}-\sqrt{50}\right).\sqrt{2}\)
h, \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
k, \(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
l, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
m, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
n, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
p, \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
q, \(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{3}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Rút gon các biểu thức:
a)\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
b)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
c)\(\sqrt{9\left(3-a\right)^2}vớia>3\)
d)\(\sqrt{a^2.\left(a-2\right)^2}vớia< 0\)
Bài 1 : Rút gọn
a) \(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Bài 2: Chứng minh
a)\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=8\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(\sqrt{6,5+\sqrt{ }12}-\sqrt{6.5-\sqrt{12}+2\sqrt{6}}\)
\(\sqrt{94-42\sqrt{5}-\sqrt{94+42\sqrt{5}}}\)
\(\sqrt{50}-2\sqrt{72}-3\sqrt{2}+\sqrt{32}\)
\(\left(2\sqrt{5}-\sqrt{125}+\sqrt{80}\right)\sqrt{5}\)
\(\left(5\sqrt{2}-3\sqrt{32}+\sqrt{200}\right)\sqrt{8}\)
(\(\sqrt{45}+\frac{1}{2}\sqrt{20}-4\sqrt{5}-\sqrt{\left(1-15^2\right)}\))\(^2 \)
\(\sqrt{9-4\sqrt{5}-3\sqrt{80}}\)
Giúp mình với ạ ! Mai mình nộp rồi
Rút gọn:
A = \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}-2\sqrt{18}\right)\)
B = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
C = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D = \(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
E = \(\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\sqrt{2}+2\sqrt{5}\)
F = \(\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
G = \(\sqrt{11-4\sqrt{7}}-\sqrt{2}\times\sqrt{8+3\sqrt{7}}\)
Tính
1) \(\sqrt{18}.\sqrt{2}\)
2) \(\sqrt{15^2-9^2}\)
3) \(\sqrt{46-6\sqrt{5}}-\sqrt{46+6\sqrt{5}}\)
4)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
5) \(\left(2+\sqrt{5}\right).\sqrt{9-4\sqrt{5}}\)
6)\(\left(3-\sqrt{2}\right).\sqrt{7+4\sqrt{3}}\)
7)\(\left(\sqrt{3}+\sqrt{5}\right).\sqrt{7-2\sqrt{10}}\)
8)\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
9) \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
10) \(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
11) \(\sqrt{3}-\sqrt{2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
12) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right).\sqrt{2}+2\sqrt{5}\)
1. Tìm giá trị của x để giá trị mỗi biểu thức sau được xác định
a) \(\sqrt{\frac{-3}{4-x}}\)
b)\(\sqrt{\frac{4}{\left(x+1\right)^2}}\)
c)\(\sqrt{\frac{x-1}{x-3}}\)
d)\(\frac{2}{1-\sqrt{x}}\)
e) \(\sqrt{\frac{2x+3}{-5}}\)
g)\(\sqrt{\left(x-1\right).\left(x-2\right)}\)
2. Tìm giá trị nguyên của a để biểu thức sau đc xác định
M=\(\frac{\sqrt{a}+3}{\sqrt{4-a}}\)