rút gọn biểu thức :
1/ \(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
2/ \(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+\sqrt{3}}{\sqrt{3}}\)
3/ \(\frac{2-\sqrt{2}}{1-\sqrt{2}}+\frac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
Tính:
a/ \(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
b/ \(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{7}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
c/ \(\frac{\sqrt{14}-\sqrt{17}}{1-\sqrt{2}}\)
d/ \(\frac{3\sqrt{2}-3}{\sqrt{2}-1}\)
e/ \(\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\)
Tính
a)\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
b)\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{3}-1}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)
c)\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
Rút gọn:
a, A = \(\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\)
b, B = \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
c, C = \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
d, D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x ≥ 2
Trục căn thức ở mẫu
1) \(\frac{2}{\sqrt{20}}\)
2) \(\frac{4}{\sqrt{8}}\)
3) \(\frac{2+\sqrt{3}}{\sqrt{2}}\)
4) \(\frac{1}{\sqrt{6}-2}\)
5) \(\frac{1}{\sqrt{2}-\sqrt{3}}\)
6) \(\frac{9a-b}{3\sqrt{a}-\sqrt{b}}\) ( a> 0, b> 0)
7) \(\frac{3\sqrt{2}}{1-\sqrt{2}-\sqrt{3}}\)
8) \(\frac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
9) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
1.Chứng minh:
\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}=-1\)
1.Khử mẫu biểu thức lấy căn
a) \(\frac{a}{b}\sqrt{\frac{b}{a}}\)
b) \(\sqrt{\frac{1}{b}+\frac{1}{b^2}}\)
c) \(3xy\sqrt{\frac{12}{xy}}\)
2.Trục căn thức ở mẫu
a) \(\frac{1}{2+\sqrt{3}}\)
b) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(\frac{3\sqrt{2}}{\sqrt{3}+1}\)
d) \(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
e) \(\frac{1}{\sqrt{2\sqrt{3}-\sqrt{2}}.\sqrt{\sqrt{2}}}\)
3.a) Tính
\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
b) Tính giá trị
\(M=\frac{\left(x-1\right)\sqrt{3}}{\sqrt{x^2-x+1}}\) với \(x=2+\sqrt{3}\)
a) Cho \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{25}}\)
Chứng minh : 7 < A < 8
b) Chứng minh : \(5\sqrt{2}< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{50}}< 10\sqrt{2}\)
Trục căn thức ở mẫu:
a,\(\frac{1}{\sqrt{2}-1}\)
b,\(\frac{2}{\sqrt{3}+1}\)
c,\(\frac{5}{\sqrt{7}-\sqrt{2}}\)
d,\(\frac{6}{2\sqrt{3}+\sqrt{2}}\)
e,\(\frac{1}{2\sqrt{a}+1}\)
g,\(\frac{2xy}{2\sqrt{x}+3\sqrt{y}}\)
h,\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i,\(\frac{a-9b}{\sqrt{a}-3\sqrt{b}}\)
k,\(\frac{15-2\sqrt{5}}{3\sqrt{15}-2\sqrt{3}}\)
13.\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+2}{\sqrt{x}+3}\)