Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hoài Duyên

Tính \(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^2}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

kudo shinichi
24 tháng 12 2018 lúc 16:55

Sửa đề:

\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{\left(a-b\right)\left(a+b\right)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a\left(a^2-b^2+a^2+b^2\right)}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a.2a^2}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3\left(a^4+b^4+a^4-b^4\right)}{a^4-b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3.2a^4}{\left(a^4+b^4\right)\left(a^4-b^4\right)}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7\left(a^8+b^8+a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)


Các câu hỏi tương tự
王一博
Xem chi tiết
Nguyen Hai Dang
Xem chi tiết
Minh
Xem chi tiết
Nguyễn Bảo Long
Xem chi tiết
Phan Chí Công
Xem chi tiết
Triệu Bảo Ngọc
Xem chi tiết
tth_new
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
Phong Du
Xem chi tiết