ai giúp mình với ạ
Bài 1: Cho đường tròn (O;R) và điểm M nằm ngoài đtròn đó. Kẻ hai tiếp tuyến MA, MB với đtròn đó (A,B là các tiếp điểm) , MO cắt cung nhỏ AB tại N.
a) tính góc AON và số đo cung ANB, biết OM=2R
b) Biết góc AMB=36 độ . Tính số đo góc AOB
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
cho hình thoi ABCD, 2 đường chéo cắt nhau tại O. Gọi H, I, K, L lần lượt là hình chiếu của O trên các cạnh AB, BC, CD, DA.
a, Chứng minh 4 điểm H, I , K, L cùng thuộc một đường tròn.
b, tính bán kính của đường tròn a biết góc BAD = 60o ,AC= 4 cm
Cho tam giác ABC nhọn. Vẽ đường cao BD và CE của tam giác, biết D thuộc cạnh AC, E thuộc cạnh AB. CE và BD cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC và AH. Chứng minh rằng: a) Bốn điểm B, C, E, D cùng thuộc đường tròn tâm I. I. b) Tứ giác IEKD nội tiếp được trong một đường tròn.
Cho hai hàm số: y=2x và y=x-1
a, Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy
b, Đường thẳng song song với trục ox, cắt Oy tại điểm có tung độ bằng 6, cắt các đường thẳng: y=2x và y=x-1 lần lượt ở A và B. Tìm tọa độ các điểm A và B
Cho tam giác ABC cân tại A. Hai điểm M và N lần lượt trên AC và AB sao cho AM = 2MC, AN = 2NB và 2 đoạn BM và CN vuông góc với nhau. Chứng minh : \(S_{ABC}=3S_{BCM}\)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Tia BD và tia CE cắt đường tròn (O) lần lượt tại M, N (M khác B, N khác C)a) Chứng minh bốn điểm B, C, D, E cùng nằm trên một đường tròn.b) Chứng minh DE // MNc) Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Tia KH cắt đường tròn (O) tại điểm thứ hai là Q. Tứ giác BHCQ là hình gì? Tại sao?d) Gọi giao điểm của HQ và BC là I. Chứng minh OI/MN > 1/4
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròm (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và SC lần lượt tại M và N. Chứng minh rằng: a) tam giác AMN là tam giác cân b) các tam giác EAI và DAI là những tam giác cân c) Tứ giác AMIN là hình thoi
Từ A nằm ngoài (O;R) vẽ 2 tiếp tuyến AE , AF đến (O;R). Đường thẳng đi qua O vuông góc với OA cắt các tia AE, AF lần lượt tại B,C . Gọi D là điểm trên cung nhỏ EF của (O;R). Tiếp tuyến tại D của (O;R) cắt AB, AC lần lượt tại M,N
a) C/m tứ giác AEOF nội tiếp
b) Gọi DE cắt MO tại I, DF cắt No tại K . Chứng minh OI.OM=ON.Ok
c) C/m \(\Delta OMN\sim\Delta BMO\)
d) Khi D thay đổi trên cung nhỏ EF của (O;R) , tìm GTLN của \(S_{\Delta AMN}\)