\(\dfrac{2a-b}{5a+b}=\dfrac{1}{3}\)
=>\(3\left(2a-b\right)=5a+b\)
=>6a-3b=5a+b
=>6a-5a=b+3b
=>a=4b
a+b=5
=>4b+b=5
=>5b=5
=>b=1
\(a=4\cdot1=4\)
\(\left|a^2-b^2\right|=\left|4^2-1^2\right|=15\)
\(\dfrac{2a-b}{5a+b}=\dfrac{1}{3}\)
=>\(3\left(2a-b\right)=5a+b\)
=>6a-3b=5a+b
=>6a-5a=b+3b
=>a=4b
a+b=5
=>4b+b=5
=>5b=5
=>b=1
\(a=4\cdot1=4\)
\(\left|a^2-b^2\right|=\left|4^2-1^2\right|=15\)
Mn giúp em bài này ạ !
Cho A = ( ax + by )2 ; B = ( a2 + b2) (x2 + y2)
So sánh giá trị hai biểu thức A và B biết :
a = 2 ; b = -1 ; x = \(\dfrac{8}{11}\); \(y=\dfrac{-5}{11}\)
Cho a+b+c = a2+b2+c2=1 và \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) và ( a,b,c ≠ 0 )
Hãy chứng minh (x+y+z)2=x2+y2+z2
Tìm a, b, c, biết
a) \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b+3c=14\)
b) \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) và \(a+b+c=49\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a + b + c = a2 + b2 + c2 = 1 và\(\dfrac{x}{a}\)=\(\dfrac{y}{b}\)=\(\dfrac{z}{c}\)( a≠0,b≠0,c≠0 )
Chứng minh rằng (x+y+z)2=x2+y2+z2
Giúp mình với ạ, mai mình thi rồi !!!!
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Tìm các số a,b biết \(\dfrac{2a+3b-1}{6a}=\dfrac{1+2a}{5}=\dfrac{3b-2}{7}\)
Tính giá trị của các biểu thức sau A=\(\dfrac{2a-5b}{a-3b}-\dfrac{4a+b}{8a-2b}\)biết \(\dfrac{a}{b}=\dfrac{3}{4}\)