
Vậy \(A=\frac{8056}{2015}\)
Bạn tham khảo: Câu hỏi của chipchip - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(\frac{1}{4}A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\)
\(\frac{1}{4}A=1-\frac{1}{2015}\)
\(\frac{1}{4}A=\frac{2014}{2015}\)
\(A=\frac{2014}{2015}:\frac{1}{4}=\frac{2014}{2015}\cdot4=\frac{8056}{2015}\)