\(a,\dfrac{3}{8}+\dfrac{1}{2}+1=\dfrac{3}{8}+\dfrac{4}{8}+1=\dfrac{7}{8}+\dfrac{8}{8}=\dfrac{15}{8}\)
\(b,\dfrac{3}{4}+\dfrac{11}{15}+\left(-1\right)=\dfrac{45}{60}+\dfrac{44}{60}+\left(-1\right)=\dfrac{89}{60}+\left(-1\right)=\dfrac{29}{60}\)
\(c,\dfrac{3}{4}+\dfrac{-1}{3}-\dfrac{-5}{18}=\dfrac{9}{12}+\dfrac{-4}{12}-\dfrac{-5}{18}=\dfrac{5}{12}-\dfrac{-5}{18}=\dfrac{90}{216}-\dfrac{-60}{216}=\dfrac{150}{216}=\dfrac{25}{36}\)
\(d,\dfrac{1}{3}-\dfrac{1}{-4}-\dfrac{1}{2}=\dfrac{-4}{-12}-\dfrac{3}{-12}-\dfrac{1}{2}=\dfrac{-7}{-12}-\dfrac{1}{2}=\dfrac{1}{12}\)
\(e,\dfrac{1}{2}+\dfrac{-1}{3}+\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{3}{6}+\dfrac{-2}{6}+\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{1}{6}+\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{4}{24}+\dfrac{6}{24}+\dfrac{1}{6}=\dfrac{10}{24}+\dfrac{1}{6}=\dfrac{5}{12}+\dfrac{1}{6}=\dfrac{5}{12}+\dfrac{2}{12}=\dfrac{7}{12}\)
\(g,\dfrac{2}{3}+\dfrac{-3}{4}+\dfrac{5}{8}+\dfrac{-1}{2}=\dfrac{8}{12}+\dfrac{-9}{12}+\dfrac{5}{8}+\dfrac{-1}{2}=\dfrac{-1}{12}+\dfrac{5}{8}+\dfrac{-1}{2}=\dfrac{-8}{96}+\dfrac{60}{96}+\dfrac{-1}{2}\)
\(=\dfrac{52}{96}+\dfrac{-1}{2}=\dfrac{13}{24}+\dfrac{-1}{2}=\dfrac{13}{24}+\dfrac{-12}{24}=\dfrac{1}{24}\)
a) 3/8 + 1/2 + 1
=7/8+1
=15/8
b) 3/4 + 11/15 + (-1)
=89/60+(-1)
=29/60
c) 3/4 + -1/3 - -5/18
=5/12- -5/18
=25/36
d) 1/3 - 1/-4 - 1/2
=7/12-1/2
=1/12
e) 1/2 + -1/3 + 1/4 + 1/6
=1/6+ 1/4 + 1/6
=7/12
g) 2/3 + -3/4 + 5/8 + -1/2
=-1/12+ 5/8 + -1/2
=1/24