\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{32}=\frac{31}{32}\)
Đặt \(K=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow2K=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(\Rightarrow2K-K\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}=\frac{31}{32}\)
Vậy \(K=\frac{31}{32}\)
đặt \(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{32}\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{16}\)
\(\Rightarrow2A-A=(1+\frac{1}{2}+...+\frac{1}{16})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{32})\)
\(\Rightarrow A=1-\frac{1}{32}\)
\(\Rightarrow A=\frac{31}{32}\)