tim cac so nguyen duong x;y;z thoa man \(3x^2-18y^2+2z^2+3y^2z^2-18x=27\)
1,tìm các số nguyên dương x,y,z thoả mãn 3x2+6y2+z2+3y2z2-18x=6
2,tìm x là số tự nhiên sao cho Q=x3+x2+2025 là một số chính phương
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)
tìm tất cả các số nguyên x; y;z thỏa mãn phương trình
3x2+6y2 +2z2+3y2z2-18x-6=0
Tìm các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 - 18x = 6
Tìm tất cả các số nguyên x,y,z thỏa mãn:
\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
cho x, y, z tm \(\hept{\begin{cases}0< x< y\le1\\0< x< z\le1\\3x+2y+z\le4\end{cases}}\)
Tìm Max P= \(3x^2+2y^2+z^2\)
\(\hept{\begin{cases}3x^2+2y+1=2z\left(x+2\right)\\3y^2+2z+1=2x\left(y+2\right)\\3z^2+2x+1=2y\left(z+2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+2y+1=2xz+4z\\3y^2+2z+1=2xy+4x\\3z^2+2x+1=2yz+4y\end{cases}}}\)
Cộng 3 vế vào rồi chuyển vế ta được
\(2x^2+2y^2+2z^2-2xy-2yz-2zx+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2 +\left(z-x\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Dễ thấy VP > 0
Dấu "=" khi x = y = z = -1