\(z=\sqrt{4\cdot9}=6\left(cm\right)\)
\(y=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
\(x=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)
\(z=\sqrt{4\cdot9}=6\left(cm\right)\)
\(y=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
\(x=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)
Tìm các số x,y,z biết:
a,
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b,
\(x+y+z+9=2\sqrt{x-2}+6\sqrt{y-3}+4\sqrt{z-9}\)
giải hộ mình vs :3
Tìm x y z dương biết 1/x+16/y+9/z=4 và x+y+z<=16
Tìm GTLN và GTNN của M = x + y + z. Biết x,y,z thỏa mãn x(x - 1) + y(y - 1) + z(z - 1) \(\le\frac{4}{3}\)
Tìm min Q=\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\) với x+y+z=6; x, y, z>0
Tìm x, y,z thỏa mãn :
x+y+z+4=2√x−3+2√y+2+4√z−1
( Biết rằng x, y, z thuôc R và x≥3·y≥2·z≥1)
Cho 3 số dương x,y,z thỏa mãn x+2y+3z=20. Tìm giá trị nhỏ nhất của biểu thức \(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
a. Tìm minA=\(x^4+y^4+z^4\)và xy+xz+yz=1
b. maxS=\(xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
biết x,y,z>0; x+y+z=1
Tìm x,y,z biết \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)=48xyz\)
Tìm x, y,z thỏa mãn :
\(x+y+z+4=2\sqrt{x-3}+2\sqrt{y+2}+4\sqrt{z-1}\)
( Biết rằng x, y, z thuôc R và x≥3·y≥2·z≥1)
Cho x , y , z \(\in Z\)thỏa : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\). Hãy tính giá trị biểu thức :
\(M=\frac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)