Tìm nghiệm nguyên dương của phương trình sau:
\(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
tìm nghiệm nguyên dương của pt: \(\sqrt{x} +\sqrt{y}=\sqrt{2012}\)
Cho các số nguyên dương x,y,z thỏa mãn x+y+z<=3
Tìm giá trị lớn nhất \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho ba số nguyên dương x,y,z thỏa mãn:\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-z}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z
VD1: Tìm nghiệm nguyên dương:\(\sqrt{x}+\sqrt{y}=9\)
VD2: Tìm x, y, z nguyên dương thỏa mãn:
x+y+z=xyz
VD3: Tìm nghiệm nguyên dương của phương trình:
\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). tìm giá trị nhỏ nhất của Q
Cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). Tìm giá trị nhỏ nhất của Q?
Cho x,y,z là ba số nguyên dương và
Q= \(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}} +\frac{16}{\sqrt{3z-1}} +\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)
Tìm GTNN của Q
tìm nghiệm nguyên dương
\(\sqrt{x}+\sqrt{y}=9\)