|2x - 3| + 5 = x - 7
=> |2x - 3| = x - 7 - 5
=> |2x - 3| = x - 12 (1)
Vì |2x−3|≥0|2x−3|≥0 với mọi x nên x−12≥0⇒x≥12x−12≥0⇒x≥12
+ Với x≥12x≥12 thì (1) sẽ trở thành 2x - 3 = x - 12
=> 2x - x = -12 + 3
=> x = -9, không thỏa mãn điều kiện x≥12x≥12
Vậy không tồn tại giá trị của x thỏa mãn đề bài
ta xét 2 trường hợp :
\(TH1:2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
\(\Rightarrow2x-3+5=x-7\)
\(\Leftrightarrow2x+2=x-7\)
\(\Leftrightarrow2x-x=-7-2\)
\(\Leftrightarrow x=-9\)( loại )
\(TH2:2x-3< 0\Leftrightarrow x< \frac{3}{2}\)
\(\Rightarrow-\left(2x-3\right)+5=x-7\)
\(\Leftrightarrow-2x-x=-7-3-5\)
\(\Leftrightarrow-3x=-15\)
\(\Leftrightarrow x=5\)( loại )
=> phương trình vô nghiệm