Ta có : \(\frac{6x-5}{3x-1}=\frac{6x-2-3}{3x-1}=\frac{6x-2}{3x-1}-\frac{3}{3x-1}=\frac{2\left(3x-1\right)}{3x-1}-\frac{3}{3x-1}\) \(=3-\frac{3}{3x-1}\)
Để : \(\frac{6x-5}{3x-1}\in Z\) thì \(\frac{3}{3x-1}\in Z\)
\(\Rightarrow\) 3 chia hết cho 3x - 1
=> 3x - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
| 3x - 1 | -3 | -1 | 1 | 3 |
| 3x | -2 | 0 | 2 | 4 |
| x | 0 |
Để \(\frac{6x-5}{3x-1}\)là số nguyên thì 6x - 5 \(⋮\)3x - 1
Ta có :
6x - 5 \(⋮\)3x - 1
6x - 1 - 4 \(⋮\)3x - 1
Mà 6x - 1 \(⋮\)3x - 1
=> 4 \(⋮\)3x - 1
Sau đó tính 3x - 1 là được