b, 2x2+x−6=02x2+x−6=0
⇒2x2+4x−3x−6=0⇒2x2+4x−3x−6=0
⇒(2x2+4x)−(3x+6)=0⇒(2x2+4x)−(3x+6)=0
⇒2x(x+2)−3(x+2)=0⇒2x(x+2)−3(x+2)=0
⇒(x+2)(2x−3)=0⇒(x+2)(2x−3)=0
⇒x+2=0⇒x+2=0 hoặc 2x−3=02x−3=0
⇒x=−2⇒x=−2 hoặc x=32x=32
Vậy x=−2x=−2 ; x=32
\(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-3\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{3}{2};2\right\}\)
\(2x^2-x-6=0\)
\(2x^2+3x-4x-6=0\)
\(x\left(2x+3\right)-2\left(2x+3\right)=0\)
\(\left(2x+3\right)\left(x-2\right)=0\)
⇒ 2x + 3 = 0 hoặc x - 2 = 0
2x =-3 hoặc x = 2
x = \(\frac{-3}{2}\) hoặc x = 2
Vậy x ∈ \(\left\{{}\begin{matrix}\frac{-3}{2}\\2\end{matrix}\right.\)
\(2x^2-x-6=0\) ( cái này là tam thức bậc 2 )
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{-3}{2}\end{matrix}\right.\)
Vậy \(x=2;y=\frac{-3}{2}\)