\(\left(4-x\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4-x=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-7\end{matrix}\right.\)
`(4-x).(x+7)=0`
`<=>`\(\left[{}\begin{matrix}4-x=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4-0\\x=0-7\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=4\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{4;-7\right\}\)
\(\left(4-x\right)\cdot\left(x+7\right)=0\)
`=>`\(\left[{}\begin{matrix}4-x=0\\x+7=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4-0\\x=0-7\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-7\end{matrix}\right.\)