\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
2\(\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{9}:2=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\)
=> x+1 =18
=> x = 18 - 1
=> x = 17