b) \(y=\dfrac{\sqrt{x+4}-2}{x^2+x}=\dfrac{\sqrt{x+4}-2}{x\left(x+1\right)}\left(x\ge-4;x\ne0;-1\right)\)
\(\lim\limits_{x\rightarrow0}\left(\dfrac{\sqrt{x+4}-2}{x\left(x+1\right)}\right)=\)\(\lim\limits_{x\rightarrow-1}\left(\dfrac{\sqrt{x+4}-2}{x\left(x+1\right)}\right)=\infty\) \(\Rightarrow TCĐ:x=0;x=-1\)
\(\lim\limits_{x\rightarrow\infty}\left(\dfrac{\sqrt{x+4}-2}{x\left(x+1\right)}\right)=0\) \(\Rightarrow TCN:y=0\)
Đồ thị không có Tiệm cận xiên vì bậc nhỏ chia cho bậc lớn.
c) Sửa lại đề\(y=\dfrac{\sqrt{x^2-3x+1}}{x^2-2x}=\dfrac{\sqrt{x^2-3x+1}}{x\left(x-2\right)}\left(x\le\dfrac{3-\sqrt{5}}{2}\cup x\ge\dfrac{3+\sqrt{5}}{2};x\ne0;2\right)\)
\(\lim\limits_{x\rightarrow0}\left(\dfrac{\sqrt{x^2-3x+1}}{x\left(x-2\right)}\right)=\)\(\lim\limits_{x\rightarrow2}\left(\dfrac{\sqrt{x^2-3x+1}}{x\left(x-2\right)}\right)=\infty\) \(\Rightarrow TCĐ:x=0;x=2\)
\(\lim\limits_{x\rightarrow\infty}\left(\dfrac{\sqrt{x^2-3x+1}}{x^2-2x}\right)=\) \(\lim\limits_{x\rightarrow\infty}\left(\dfrac{x\sqrt{1-\dfrac{3}{x}+\dfrac{1}{x^2}}}{x^2\left(1-\dfrac{2}{x}\right)}\right)=0\) \(\Rightarrow TCN:y=0\)
Đồ thị không có Tiệm cận xiên vì bậc nhỏ chia cho bậc lớn.
a) \(y=1-2x+\dfrac{1}{4x+1}\left(x\ne-\dfrac{1}{4}\right)\)
\(\lim\limits_{x\rightarrow-\dfrac{1}{4}}\left(1-2x+\dfrac{1}{4x+1}\right)=+\infty\) \(\Rightarrow TCĐ:x=-\dfrac{1}{4}\)
\(\lim\limits_{x\rightarrow\infty}\left(1-2x+\dfrac{1}{4x+1}\right)=\infty\) nên không có TCN
\(\lim\limits_{x\rightarrow-\infty}\left[y-\left(1-2x\right)\right]=\)\(\lim\limits_{x\rightarrow+\infty}\left[y-\left(1-2x\right)\right]=0\) \(\Rightarrow TCX:y=1-2x\)