Giải:
+(3n\(^2\) + 2n + 2) ⋮ (3n + 1)
3.(3n\(^2\) + 2n + 2) ⋮ (3n + 1)
(9n\(^2+6n+6)\) ⋮ (3n + 1)
[(9n\(^2\) + 3n) + (3n + 1) + 5] ⋮ (3n+ 1)
[3n(3n + 1) + (3n + 1) + 5] ⋮ (3n + 1)
5 ⋮ (3n + 1)
(3n + 1) ∈ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
3n+1 | -5 | -1 | 1 | 5 |
n | -2 | -2/3 | 0 | 4/3 |
n∈N | ktm | ktm | tm | ktm |
Theo bảng trên ta có: n = 0
Vậy n = 0
Ta có: \(3n^2+2n+2\) ⋮3n+1
=>\(3n^2+n+n+2\) ⋮3n+1
=>n+2⋮3n+1
=>3n+6⋮3n+1
=>3n+1+5⋮3n+1
=>5⋮3n+1
=>3n+1∈{1;-1;5;-5}
=>3n∈{0;-2;4;-6}
=>n∈{0;-2/3;4/3;-2}
mà n là số tự nhiên
nên n=0