Tìm tất cả các giá trị m để hàm số y= -x^2+2|m-1|x-3 nghịch biến trên (2;+\(\infty\))
cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
hàm số y = x2 +(m+1)x +3 đồng biến trên (1;\(+\infty\) ) khi giá trị m thõa........
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Cho hàm số \(y=f\left(x\right)=x^2+2\left(m-1\right)x+3m-5\) (m là tham số). Tìm m để giá trị nhỏ nhất của f(x) đạt giá trị lớn nhất
Tất cả các giá trị m để hàm số y=x2-m2-m/x-2 đồng biến trên khoảng (2;+vô cùng)
Với giá trị nào của m thì hàm số đồng biến? nghịch biến?
a, y = (2m+3)x-m+1
b, y = (2m+5)x+m+3
c, y = mx-3-x
d, y = m(x+2)
Tìm tất cả giá trị của tham số m để phương trình x2+2mx-m-1=0 có 2 nghiệm phân biệt x1,x2 sao cho x12+x22=2